Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

Overview	Standards for Mathematical Content Unit Focus		Standards for Mathematical Practice
Unit 1 Complex Solutions and Modeling with Rational Exponents		- Perform arithmetic operations with complex numbers - Use complex numbers in polynomial identities and equations - Build a function that models a relationship between two quantities - Construct \& compare linear, quadratic, \& exponential models - Write expressions in equivalent forms to solve problems - Extend the properties of exponents to rational exponents - Analyze functions using different representations	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics.
Unit 1: Suggested Open Educational Resources	N.CN.A. 1 Complex number patterns N.CN.A. 2 Powers of a complex number N.CN.C.7, A.REI.B.4b Completing the square A.REI.C. 7 Linear and Quadratic System A.REI.C. 6 Pairs of Whole Numbers F.BF.A. 2 Snake on a Plane F.LE.A. 2 Rumors	F.LE.B.5, F.LE.A. 2 Exponential Parameters A.SSE.B. 4 Course of Antibiotics N.RN.A. 1 Evaluating Exponential Expressions N.RN.A. 2 Rational or Irrational? A.SSE.B.3c Forms of exponential expressions F.IF.C.8b Carbon 14 dating in practice I F.LE.A. 4 Carbon 14 dating	

Major Supporting Additional (Identified by PARCC Model Content Frameworks).

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

Curriculum Unit 1	Standards		Pacing	
			Days	Unit Days
Unit 1 Complex Solutions and Modeling with Rational Exponents	- N.CN.A. 1 - N.CN.A. 2 - N.CN.C. 7 - A.REI.C. 7 - A.REI.C. 6 - F.LE.B. 5	Add, subtract, and multiply complex numbers using the commutative, associative and distributive properties. Solve quadratic equations with real coefficients that have complex solutions. Solve simple systems consisting of a linear and quadratic equation in two variables algebraically and graphically. Solve algebraically a system of three linear equations. Interpret the parameters in a linear or exponential function in terms of a context.	13	
	- A.REI.B. 4 - F.LE.A. 2 - F.IF.C. 8 - F.LE.A. 4	Solve quadratic equations in one variable. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Express as a logarithm the solution to $\mathrm{ab}^{\mathrm{ct}}=\mathrm{d}$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	13	45
	- F.BF.A. 2 - A.SSE.B. 4 - N.RN.A. 1 - N.RN.A. 2 - A.SSE.B. 3	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Use the formula for the sum of a finite geometric series to solve problems [for example, calculate mortgage payments; derive the formula for the sum of a finite geometric series (when the common ratio is not 1)]. Use properties of integer exponents to explain and convert between expressions involving radicals and rational exponents. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression	14	
		Assessment, Re-teach and Extension	5	

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1
Unit 1 Algebra 2

Unit 1 Algebra 2								

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

- A.REI.C.6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- F.BF.A.2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- F.LE.A. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- F.LE.B.5. Interpret the parameters in a linear or exponential function in terms of a context.
- A.SSE.B.4. Derive and/or explain the
derivation of the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.

MP. 1 Make sense of problems and persevere in solving them.

MP. 7 Look for and make use of structure.

MP. 1 Make sense of problems and persevere in solving them.

MP. 2 Reason abstractly and quantitatively.

MP 4. Model with mathematics
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.

MP. 8 Look for and express regularity in repeated reasoning.

MP. 1 Make sense of problems and persevere in solving them.

MP. 7 Look for and make use of structure.

Concepts:

- Solving a system of linear equations containing n variables requires n equations.
Students are able to:
- use the substitution method and/or elimination method to find the solution of a system containing three linear equations.
Learning Goal 4: Solve algebraically a system of three linear equations.
Concepts:
- Recursion

Students are able to:

- distinguish between recursive and explicit formulas.
- represent geometric and arithmetic sequences recursively
- represent geometric and arithmetic sequences with explicit formulas.
- translate between recursive form and explicit form of geometric and arithmetic sequences.
- recognize explicit formula for geometric sequences as exponential functions containing a domain in the integers only.
- interpret the parameters of an exponential function representing a geometric sequence.
- interpret the parameters of a linear function representing an arithmetic sequence.
Learning Goal 5: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
Concepts:
- Series as a sum of a sequence

Students are able to:

- derive or explain the derivation of the formula for the sum of a finite geometric series.
- use the formula for the sum of a finite geometric series to solve problems.
Learning Goal 6: Use the formula for the sum of a finite geometric series to solve problems [for example, calculate mortgage payments; derive the formula for the sum of a finite geometric series (when the common ratio is not 1)].

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

- N.RN.A.1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left({ }^{1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .
- N.RN.A.2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.
- A.SSE.B.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression
A.SSE.B.3c: Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
- F.IF.C.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function
F.IF.C.8b: Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=$ $(1.02)^{t}, y=(0.97)^{t}, y=(1.01)^{12 t}, y=$ $(1.2)^{t / 10}$, and classify them as representing exponential growth or decay.

MP. 7 Look for and make use of structure.

Concepts:

- Properties of integer exponents extends to rational exponents (for example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left(\left(^{1 / 3}\right)^{3}\right.$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5)
- Radical notation is a representation of rational exponents.

Students are able to:

- rewrite expressions containing rational exponents into radical form.
- rewrite expressions containing radical notation into exponential expressions containing rational exponents
Learning Goal 7: Use properties of integer exponents to explain and convert between expressions involving radicals and rational

MP. 1 Make sense of problems and persevere in solving them.

MP. 2 Reason abstractly and quantitatively.

MP. 4 Model with mathematics.
MP. 7 Look for and make use of structure.
exponents.
Concepts:

- Alternate, equivalent forms of an exponential expression containing rational exponents may reveal specific attributes of the function that it defines.
Students are able to:
- use properties of exponent transform/rewrite an exponential expression for an exponential function.
- explain the properties of the quantity or the function.

Learning Goal 8: Use the properties of exponents to transform expressions for exponential functions, explain properties of the quantity revealed in the transformed expression or different properties of the function.

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

- F.LE.A.4. Understand the inverse relationship between exponents and logarithms. For exponential models, express as a logarithm the solution to $a b^{\mathrm{ct}}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.

MP. 2 Reason abstractly and quantitatively.

MP. 4 Model with mathematics.

Concepts:

- Exponents and logarithms have an inverse relationship.
- Solutions to an exponential equation in one variable can be written as a logarithm.
Students are able to:
- transform an exponential model represented by $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e.
- write the solution to $a b^{\text {ct }}=d$ as a logarithm.
- use technology to evaluate logarithms having base 2,10 , or e.

Learning Goal 9: Express as a logarithm the solution to $\mathrm{ab}^{\mathrm{ct}}=\mathrm{d}$ where a, c, and d are numbers and the base b is 2,10 , or e ; evaluate the logarithm using technology.

Winslow Township School District
 Mathematics Curriculum - Algebra 2

Unit 1

Unit 1 Algebra 2	
District/School Formative Assessment Plan	District/School Summative Assessment Plan
Pre-Assessment, Quizzes Exit Tickets Daily Monitoring Linkit!	Unit Benchmark

Focus Mathematical Concepts

Prerequisite skills:

Students should be able to:

- Writes linear equations in Slope-Intercept form
- Graph a linear equation
- Solve systems of equations
- Simplify a radical expression
- Graph quadratic functions
- Factor quadratic expressions
- Simplify rational exponents

Common Misconceptions:

Some students may believe that factoring and completing the square are isolated techniques within a unit of quadratic equations. Teachers should help students to see the value of these skills in the context of solving higher degree equations and examining different families of functions.
Students may think that the minimum (the vertex) of the graph of $y=(x+5)^{2}$ is shifted to the right of the minimum (the vertex) of the graph $y=x^{2}$ due to the addition sign. Students should explore examples both analytically and graphically to overcome this misconception.
Some students may believe that the minimum of the graph of a quadratic function always occur at the y-intercept
Some students cannot distinguish between arithmetic and geometric sequences, or between sequences and series. To avoid this confusion, students need to experience both types of sequences and series.
Students commonly do not understand what it means to find the sum of a series. For example, if a student is asked to find the sum of the first 17 terms of a series, they will only find the 17th term.
Students often do not recognize that there are multiple ways of finding sums of series. Although it is not always practical, students could use a conceptual method to find the sums rather than using a formula.

Fluency Recommendations:

A-SSE.A. 2 The ability to see structure in expressions and to use this structure to rewrite expressions is a key skill in everything from advanced factoring (e.g., grouping) to summing series to the rewriting of rational expressions to examine the end behavior of the corresponding rational function.
F-IF.A. 3 Fluency in translating between recursive definitions and closed forms is helpful when dealing with many problems involving sequences and series, with applications ranging from fitting functions to tables to problems in finance.

Winslow Township School District

Mathematics Curriculum - Algebra 2
Unit 1

District/School Tasks	District/School Primary and Supplementary Resources and Technology Integration
PARCC Released Items http://www.parcc-assessment.org/released-items	Textbook IXL https://www.ixl.com/
NJDOE Digital Item Library	Khan Academy
https://nj.digitalitemlibrary.com/home	https://www.khanacademy.org/ HS Flip Book:
NJSLA Mathematics Evidence Statements	http://community.ksde.org/Default.aspx?tabid=5646
$\frac{\text { https://docs.google.com/spreadsheets/d/18M5r1jk4P729fTpAlWAzrw1gE6tken233I- }}{\text { Yk0U712M/edit\#gid }=554025491}$	North Carolina Dept of Ed. Wikispaces: http://maccss.ncdpi.wikispaces.net/High+School
	PARCC Resources:
LinkIt! Form A, B, \& C	http://www.parcc-assessment.org/assessments/test-design/mathematics/math-test-specifications-documents
	101 Math Discourse Questions:
	http://www.casamples.com/downloads/100MathDiscourseQuestions_Printable.pdf Asking Effective Questions
	http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/CBS_AskingEffecti veQuestions.pdf
	Diversity, Equity \& Inclusion Educational Resources https://www.nj.gov/education/standards/dei/
Instructional Best Practices and Exemplars	
1. Identifying similarities and differences	6. Cooperative learning
2. Summarizing and note taking	7. Setting objectives and providing feedback
3. Reinforcing effort and providing recognition	8. Generating and testing hypotheses
4. Homework and practice	9. Cues, questions, and advance organizers
5. Nonlinguistic representations	10. Manage response rate

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

Vocabulary			
absolute value function complex numbers complex roots function	exponential inverse function Laws of Logarithms logarithmic	relative maximums relative minimums Step function	symmetries transformations trigonometric
9.1 Personal Financial Literacy, 9.2 Career Awareness, Exploration, Preparation and Training \& 9.4 Life Literacies and Key Skills			
9.4.12.CI.1: Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a). 9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a). 9.4.12.TL.3: Analyze the effectiveness of the process and quality of collaborative environments.			

The implementation of the 21 st Century skills and standards for students of the Winslow Township District is infused in an interdisciplinary format in a variety of curriculum areas that include, English language Arts, Mathematics, School Guidance, Social Studies, Technology, Visual and Performing Arts, Science,
Physical Education and Health, and World Language.
Additional opportunities to address 9.1, $9.2 \& 9.4$:

Philadelphia Mint

https://www.usmint.gov/learn/kids/resources/educational-standards

Different ways to teach Financial Literacy

https://www.makeuseof.com/tag/10-interactive-financial-websites-teach-kids-money-management-skills/

Suggested Modifications for Special Education/504

Students with special needs: The students' needs will be addressed on an individual and grade level using a variety of modalities. Accommodations will be made for those students who need extra time to complete assignments. Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Physical expectations and modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered.
\square Provide the opportunity to re-take tests
\square Modify activities/assignments/projects/assessments
\square Breakdown activities/assignments/projects/assessments into manageable unitsIndividual Intervention/RemediationAdditional Support Materials
\square Additional time to complete activities/assignments/projects/assessments
\square Provide an option for alternative activities/assignments/projects/assessmentsGuided Notes
\square Modify Content
Graphic OrganizersAdjust Pacing of Content
\square Modify Amount
\square Small Group Intervention/RemediationIncrease one on one time
\square Peer Support
\square Other Modifications for Special Education:

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

Suggested Modifications for At-Risk Students

Formative and summative data will be used to monitor student success. At first signs of failure, student work will be reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations
\square Provide the opportunity to re-take tests
\square Modify Content
\square Increase one on one time
\square Modify Amount
\square Oral prompts can be givenAdjust Pacing of Content
\square Using visual demonstrations, illustrations, and modelsSmall Group Intervention/Remediation
\square Give directions/instructions verbally and in simple written formatIndividual Intervention/Remediation
\square Peer SupportAdditional Support Materials
\square Modify activities/assignments/projects/assessmentsGuided Notes
\square Additional time to complete activities/assignments/projects/assessments
\square Provide an option for alternative activities/assignments/projects/assessments
\square Graphic Organizers

Suggested for English Language Learners

\square Other Modifications for Students At-Risk:

All WIDA Can Do Descriptors can be found at this link:
https://wida.wisc.edu/teach/can-do/descriptors
\square Grades 9-12 WIDA Can Do Descriptors:
\square Listening \square SpeakingReading \square Writing
\square Oral Language
Students will be provided with accommodations and modifications that may include:

- Relate to and identify commonalities in mathematics studies in student's home country
- Assist with organization
- Use of computer
- Emphasize/highlight key concepts
- Teacher Modeling
- Peer Modeling
- Label Classroom Materials - Word Walls

Suggested Modifications for Gifted Students

Students excelling in mastery of standards will be challenged with complex, high level challenges related to the topic.

- Raise levels of intellectual demands
- Require higher order thinking, communication, and leadership skills
- Differentiate content, process, or product according to student's readiness, interests, and/or learning styles
- Provide higher level texts
- Expand use of open-ended, abstract questions
- Critical and creative thinking activities that provide an emphasis on research and in-depth study
- Enrichment Activities/Project-Based Learning/ Independent Study

Additional Strategies may be located at the links:

* Gifted Programming Standards
* Webb's Depth of Knowledge Levels and/or Revised Bloom's Taxonomy
* REVISED Bloom's Taxonomy Action Verbs

Winslow Township School District

Mathematics Curriculum - Algebra 2

Unit 1

	Suggested Activities
\square Do Now/Warm-Up	\square Centers
\square Whole Group	\square Intervention/Remediation
\square Small Groups	\square Projects
\square Guided Practice	\square
\square Independent Practice	\square Academic Games
	\square Other Suggested Activities:

Big Ideas Real-Life STEM Videos and Performance Tasks

Interdisciplinary Connections: ELA
NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.W2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization, and analysis of content
NJSLSA.L1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking
SL.9-10.4: Present information, findings and supporting evidence clearly, concisely and logically. The content, organization, development and style are appropriate to task, purpose and audience.
NJSLSA.L6: Acquire and use accurately a range of general academic and domain-specific words and phrases sufficient for reading, writing, speaking and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when encountering an unknown term important to comprehension or expression.

Integration of Computer Science and Design Thinking NJSLS 8

8.1.12.AP.8: Evaluate and refine computational artifacts to make them more usable and accessible.
8.2.12.ETW.2: Synthesize and analyze data collected to monitor the effects of a technological product or system on the environment. •8.2.12.ETW.3: Identify a complex, global environmental or climate change issue, develop a systemic plan of investigation, and propose an innovative sustainable solution.

